q^2+6q=-1

Simple and best practice solution for q^2+6q=-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2+6q=-1 equation:



q^2+6q=-1
We move all terms to the left:
q^2+6q-(-1)=0
We add all the numbers together, and all the variables
q^2+6q+1=0
a = 1; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·1·1
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{2}}{2*1}=\frac{-6-4\sqrt{2}}{2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{2}}{2*1}=\frac{-6+4\sqrt{2}}{2} $

See similar equations:

| 0.1v^2+0.2v=0.3 | | 2n+3=-26 | | -35-x=-35-6x | | 4/5(x-6)+2x=0 | | 7x−65​=6x | | 2x-5+2(2x)+13=-2-5x+(-6) | | 5x-11=-2/3x+6 | | 1/2(14+8x0=2-(x-10) | | 1+2n-3=14 | | s-$10=$20.24 | | 1/6x=0.25 | | x+56+2x-16+x=180 | | 12v=-19v+2(17v-18) | | 179=8-x | | 5x=56=x | | -12x-2x=-2x-13x-13 | | 2x-4+2(3x)+13=-2-2x+(4-7 | | 2w-18=8w+10 | | 4m+7.75=33.75 | | -6+4-5h=17 | | 2a+13=38 | | -32-8x=-4(2x+8) | | 90-y=262 | | 7.5x+4=70 | | 9x-2=-4x=5.8 | | 3(z+1/3)=1/z-1/3 | | 5(x+2)-4x+1=17 | | −4x2+12x−9=0 | | 16=-7-8+3y | | x2+12x+33=0 | | 5x+6=7x-11 | | 7b−​5​​2​​=6b−​ |

Equations solver categories